USM Mechanical Engineering		
EMH 362 Internal Combustion Engines	Spring 2011	Prof. Horizon Gitano
Homework 4	Rev. 1	www.skyshorz.com/university/resource.php

HW#4 Internal Combustion Engines

- 1) An engine operating at 4500 rpm produces 25Nm or torque on a chassis dynamometer rolling at 1500 rpm. The engine consumes 30cc of fuel for 60 seconds of operation. Assume a 10% power loss during transmission to the dyno roller (mostly at the tire roller interface). Answer the following:
- A) What is the torque produced at the engine [Nm]?
- B) What is the engine power [kW]?
- C) What is the BSFC of the engine [gm/kWh]?
- D) If the engine is a 135cc 4-stroke, what is the BMPE of this operating point [kPa]?
- 2) 10mg of n-octane fuel is being delivered to an engine. Calculate the *Total Surface Area*, the *Total number of droplets* and the *Time to evaporate* at 330K for the following fuel induction methods:
- A) Carburetion giving 250µm droplet diameter.
- B) Port Fuel Injection giving 30µm droplet diameter.
- C) Direct Injector giving 10µm droplet diameter.

Assume that the relation ship between Evaporation time (t) and Droplet Diameter (d) is:

$$t = d^2 / k$$

where \mathbf{k} is 3 x 10 -7 m²/s, (appropriate for n-octane fuel in an engine at 330K).

- D) Which technique would give you the largest cylinder to cylinder fueling variation?
- E) Which technique would give the least cycle to cycle AFR variation during a transient?
- F) Which technique would you expect to give you the least overall Hydrocarbon Emissions?

HW#4-11.doc page 2

2) One Cylinder of an automotive Engine may have the following parameters:

Bore = Stroke

Connecting Rod Length = 3/2 * Stroke

$$v_d$$
 = 400 cc
T_i = 320K
P_i = 1 atm
CR = 10
 Φ = 1

 $\eta_v = 1$

Fuel is C₈H₁₈

The above Equation describes the fraction of Fuel Burned as a function of Crank Angle (θ). Using the following data:

 $\Delta\theta$ = 28 deg (Burn Duration)

a = 5

m = 2

- A) Determine what θ_0 must be to have a peak pressure at 8°atdc.
- B) Plot P vs θ (from -180 to 180 deg) for the motored case (ie. no firing).
- C) Plot P vs θ for the firing case on the same axis.
- D) Plot P versus V for the motored and fired case on the same axis.

You can assume isentropic expansion/compression in the motored case, and IVC and EVO at BDC. Make whatever assumptions are necessary, and state them.

HW#4-11.doc page 3